All possible physical equations

All possible (already known as well as yet unknown) physical equations are coming directly from the single FL-equation and can be thus calculated be means of a simple computer program. The original output of this program has been extended here with my subjective remarks concerning the level of popularity of any calculated physical equation in the traditional physics; 4 means very well known equation, 0 stands for an equation completely unknown to the traditional scientists.
The additional factor M appearing in the relations defining a dynamical physical quantity through two electrodynamical quantities is a material factor (M = µ-3), compensating the traditional difference in the definitions of the both groups (planes) of the physical quantities.

Physical
quantities in all possible relations to another quantities

Nr Name Relation L In relation to
1 acceleration a = f2 * r 4 rotation
2 acceleration a = M * E * B 2 electromagnetic field
3 acceleration a = M * U * B*k 2 electric potential
4 acceleration a = M * A*E * B*delta 2 electric flux
5 acceleration a = P * n 1 power
6 acceleration a = delta * f*F 2 force change
7 acceleration a = M * i * B*f 2 electric current
8 acceleration a = M * H * f*H 1 magnetic field
9 acceleration a = G * t 0 gravitational factor
10 acceleration a = f * c 4 defines acceleration
11 acceleration a = c2 * k 2 radiation intensity
12 action J = A * A 0 quantum area
13 action J = M * i * q*r 2 electric dipole moment
14 action J = F * k*m 2 force
15 action J = M * k*q * mu~ 2 magnetic dipole moment
16 action J = M * q * A*H 2 magnetic flux
17 action J = A*f * m 3 circulation
18 action J = r * p 4 defines angular momentum
19 action J = eps*A * P 1 power
20 action J = W * t 4 defines action
21 area A = sigma * W 0 energy
22 area A = r * r 4 defines quantum area
23 area A = M * i * k*q 2 electric current
24 area A = M * rho_q * mu~ 2 magnetic dipole moment
25 area A = M * q * H 2 magnetic field
26 area A = M * q*r * B 2 electric dipole moment
27 area A = f * m 0 quantum mass
28 area A = F * rho_m 1 mass density
29 area A = M * A*H * D 1 magnetic flux
30 area A = epsilon * P 1 power
31 area A = J * delta 2 action
32 area A = eps*A * c2 1 radiation intensity
33 area A = C * f*F 1 electric capacitance
34 area A = A*f * t 3 circulation
35 area A = k*m * c 1 mass distribution
36 area A = p * k 0 momentum
37 dielectric factor epsilon = rho_m * rho_m 0 mass density
38 dielectric factor epsilon = eps*A * delta 1 optical area
39 dielectric factor epsilon = sigma * t 2 conductivity
40 dielectric factor epsilon = C * k 3 electric capacitance
41 electric capacitance C = epsilon * r 4 dielectric factor
42 electric capacitance C = sigma * k*m 1 conductivity
43 electric capacitance C = rho_m * t 1 mass density
44 electric capacitance C = eps*A * k 4 optical area
45 electric charge q = epsilon * A*E 4 GAUSS electric flux
46 electric charge q = C * U 4 defines electric capacitance
47 electric charge q = r * k*q 3 charge distribution
48 electric charge q = sigma * mu~ 3 magnetic dipole moment
49 electric charge q = k*m * H 0 mass distribution
50 electric charge q = B * m 0 quantum mass
51 electric charge q = A*H * rho_m 0 magnetic flux
52 electric charge q = rho_q * p 0 momentum
53 electric charge q = E * eps*A 4 electric field
54 electric charge q = A * D 4 GAUSS induction flux
55 electric charge q = i * t 4 electric current
56 electric charge q = q*r * k 4 electric dipole moment
57 electric charge density rho_q = sigma * H 2 conductivity
58 electric charge density rho_q = B * rho_m 0 mass density
59 electric charge density rho_q = k*m * B*delta 1 mass distribution
60 electric charge density rho_q = k*q * delta 3 charge distribution
61 electric charge density rho_q = q * n 4 defines charge density
62 electric charge density rho_q = C * B*f 2 electric capacitance
63 electric charge density rho_q = epsilon * f*H 3 magnetic field change
64 electric charge density rho_q = B*k * t 2 magnetic wave vector
65 electric charge density rho_q = D * k 4 GAUSS charge density
66 electric conductivity sigma = epsilon * f 3 dielectric factor
67 electric conductivity sigma = M * rho_q * D 3 charge density
68 electric conductivity sigma = k*m * n 1 mass distribution
69 electric conductivity sigma = delta * t 1 quantum period
70 electric conductivity sigma = rho_m * k 0 mass density
71 electric current i = sigma * A*E 3 OHM electric flux
72 electric current i = rho_q * F 2 force
73 electric current i = q * f 4 defines electric current
74 electric current i = r * H 4 AMPERE electric current
75 electric current i = A * B 0 quantum area
76 electric current i = U * rho_m 0 mass density
77 electric current i = B*k * p 2 momentum
78 electric current i = A*f * D 4 MAXWELL electric current
79 electric current i = J * B*delta 1 action
80 electric current i = mu~ * delta 3 magnetic dipole moment
81 electric current i = m * B*f 1 quantum mass
82 electric current i = k*m * f*H 1 mass distribution
83 electric current i = E * t 2 quantum period
84 electric current i = k*q * c 3 charge distribution
85 electric current i = A*H * k 3 magnetic flux
86 electric dipole moment q*r = J * rho_q 2 action
87 electric dipole moment q*r = C * A*E 2 electric flux
88 electric dipole moment q*r = q * r 4 defines el. dipole moment
89 electric dipole moment q*r = A * k*q 3 quantum area
90 electric dipole moment q*r = i * k*m 1 mass distribution
91 electric dipole moment q*r = H * m 1 magnetic field
92 electric dipole moment q*r = mu~ * rho_m 1 magnetic dipole moment
93 electric dipole moment q*r = U * eps*A 2 electric potential
94 electric dipole moment q*r = p * D 1 momentum
95 electric dipole moment q*r = A*H * t 2 magnetic flux
96 electric field strength E = i * f 4 defines current in time
97 electric field strength E = q * f2 4 electric charge
98 electric field strength E = a * k*q 3 acceleration
99 electric field strength E = A*f * B 2 circulation
100 electric field strength E = F * B*k 2 force
101 electric field strength E = W * B*delta 2 energy
102 electric field strength E = A*E * delta 3 electric flux
103 electric field strength E = D * c2 3 planar charge density
104 electric field strength E = rho_q * f*F 1 force change
105 electric field strength E = A * B*f 3 quantum area
106 electric field strength E = r * f*H 2 magnetic field change
107 electric field strength E = H * c 3 magnetic field
108 electric field strength E = U * k 4 defines potential in space
109 electric flux A*E = a * q*r 2 acceleration
110 electric flux A*E = A * E 4 defines electric flux
111 electric flux A*E = i * A*f 2 circulation
112 electric flux A*E = U * r 3 electric potential
113 electric flux A*E = f * mu~ 3 magnetic dipole moment
114 electric flux A*E = F * H 2 force
115 electric flux A*E = W * B 1 energy
116 electric flux A*E = D * P 1 power
117 electric flux A*E = q * c2 3 electric charge
118 electric flux A*E = k*q * f*F 1 force change
119 electric flux A*E = J * B*f 1 action
120 electric flux A*E = p * f*H 2 momentum
121 electric flux A*E = A*H * c 3 magnetic flux
122 electric potential U = a * q 2 acceleration
123 electric potential U = q*r * f2 2 electric dipole moment
124 electric potential U = E * r 4 defines electric potential
125 electric potential U = A*f * H 1 circulation
126 electric potential U = f * A*H 4 FARADAY_HENRY emf
127 electric potential U = F * B 2 force
128 electric potential U = W * B*k 2 energy
129 electric potential U = rho_q * P 4 POISSON charge density
130 electric potential U = k*q * c2 4 POISSON charge distribution
131 electric potential U = D * f*F 1 force change
132 electric potential U = p * B*f 2 momentum
133 electric potential U = A * f*H 1 magnetic field change
134 electric potential U = i * c 3 OHM resistance
135 electric potential U = A*E * k 3 electric flux
136 energy W = M * q*r * E 3 electric dipole moment
137 energy W = M * q * U 3 defines electric energy
138 energy W = A * A*f 1 circulation
139 energy W = J * f 4 PLANCK quantum energy
140 energy W = F * r 4 defines work
141 energy W = M * A*E * k*q 2 electric flux
142 energy W = M * mu~ * H 4 magnetic dipole moment
143 energy W = M * i * A*H 3 magnetic flux
144 energy W = m * c2 4 EINSTEIN energy
145 energy W = k*m * f*F 3 mass distribution
146 energy W = P * t 4 power
147 energy W = p * c 4 momentum
148 flux of frequency A*f = M * rho_q * A*E 2 electric flux
149 flux of frequency A*f = A * f 4 defines flux of frequency
150 flux of frequency A*f = M * E * k*q 2 electric field
151 flux of frequency A*f = a * k*m 2 acceleration
152 flux of frequency A*f = M * i * H 3 magnetic field
153 flux of frequency A*f = M * A*H * B 2 magnetic flux
154 flux of frequency A*f = M * mu~ * B*k 2 magnetic dipole moment
155 flux of frequency A*f = f2 * m 2 quantum mass
156 flux of frequency A*f = M * U * D 2 defines electric resistivity
157 flux of frequency A*f = sigma * P 1 conductivity
158 flux of frequency A*f = W * delta 2 energy
159 flux of frequency A*f = rho_m * f*F 2 mass density
160 flux of frequency A*f = M * q*r * B*f 1 electric dipole moment
161 flux of frequency A*f = M * q * f*H 1 electric charge
162 flux of frequency A*f = c2 * t 2 radiation intensity
163 flux of frequency A*f = r * c 3 defines circulation
164 flux of frequency A*f = F * k 2 defines elastic force coeff.
165 force F = M * i * i 3 COULOMB electric force
166 force F = M * q * E 3 LORENTZ electric force
167 force F = A*f * r 4 HOOKE elastic force
168 force F = M * U * k*q 3 electric potential
169 force F = M * H * A*H 2 COULOMB magnetic force
170 force F = M * mu~ * B 3 magnetic dipole moment
171 force F = a * m 4 NEWTON acceleration
172 force F = f * p 4 NEWTON dynamic force
173 force F = M * A*E * D 2 electric flux
174 force F = rho_m * P 3 mass density
175 force F = k*m * c2 3 mass distribution
176 force F = M * q*r * f*H 2 electric dipole moment
177 force F = f*F * t 2 quantum period
178 force F = A * c 3 defines rate of flow
179 force F = W * k 4 energy
180 frequency f = M * rho_q * E 2 electric field
181 frequency f = C * G 0 gravitational factor
182 frequency f = M * H * B 2 magnetic field
183 frequency f = M * i * B*k 2 electric current
184 frequency f = a * rho_m 0 acceleration
185 frequency f = M * A*H * B*delta 1 magnetic flux
186 frequency f = A*f * delta 2 defines vorticity
187 frequency f = F * n 0 force
188 frequency f = sigma * c2 1 radiation intensity
189 frequency f = M * k*q * B*f 1 charge distribution
190 frequency f = M * D * f*H 2 electromagnetic field
191 frequency f = f2 * t 4 defines time derivative
192 frequency f = c * k 4 defines rotation
193 frequency square f2 = f * f 4 defines frequency square
194 frequency square f2 = M * E * B*k 2 electromagnetic field
195 frequency square f2 = G * rho_m 1 gravitational factor
196 frequency square f2 = M * U * B*delta 2 electric potential
197 frequency square f2 = delta * c2 4 D'ALEMBERT 2. time derivat.
198 frequency square f2 = n * f*F 1 force change
199 frequency square f2 = M * H * B*f 2 magnetic field
200 frequency square f2 = M * B * f*H 1 magnetic induction
201 frequency square f2 = a * k 3 acceleration
202 gravitational factor G = a * f 0 defines gravitational factor
203 gravitational factor G = M * E * B*f 0 electromagnetic field
204 gravitational factor G = M * f*H * f*H 0 magnetic field
205 gravitational factor G = f2 * c 0 frequency square
206 length r = sigma * F 1 conductivity
207 length r = f * k*m 0 mass distribution
208 length r = M * k*q * H 1 charge distribution
209 length r = M * rho_q * A*H 2 defines electric inductance
210 length r = M * q * B 1 electric charge
211 length r = M * q*r * B*k 2 electric dipole moment
212 length r = A*f * rho_m 1 circulation
213 length r = a * eps*A 2 acceleration
214 length r = M * i * D 2 electric current
215 length r = p * delta 3 defines viscosity coeffic.
216 length r = J * n 0 action
217 length r = C * c2 3 electric capacitance
218 length r = epsilon * f*F 0 force change
219 length r = t * c 4 defines wavelength
220 length r = A * k 2 quantum area
221 linear density of electric charge k*q = A * rho_q 3 charge density
222 linear density of electric charge k*q = C * E 3 electric capacitance
223 linear density of electric charge k*q = epsilon * U 3 electric potential
224 linear density of electric charge k*q = sigma * A*H 2 conductivity
225 linear density of electric charge k*q = k*m * B 0 mass distribution
226 linear density of electric charge k*q = B*k * m 0 quantum mass
227 linear density of electric charge k*q = i * rho_m 1 mass density
228 linear density of electric charge k*q = r * D 3 planar charge density
229 linear density of electric charge k*q = q*r * delta 3 electric dipole moment
230 linear density of electric charge k*q = eps*A * f*H 1 optical area
231 linear density of electric charge k*q = H * t 1 magnetic field
232 linear density of electric charge k*q = q * k 3 defines linear charge density
233 linear density of mass k*m = M * rho_q * q*r 0 electric dipole moment
234 linear density of mass k*m = C * A*f 0 electric capacitance
235 linear density of mass k*m = epsilon * F 1 force
236 linear density of mass k*m = M * k*q * k*q 0 charge distribution
237 linear density of mass k*m = A * rho_m 3 mass density
238 linear density of mass k*m = sigma * p 1 conductivity
239 linear density of mass k*m = M * q * D 0 electric charge
240 linear density of mass k*m = r * t 0 quantum period
241 linear density of mass k*m = eps*A * c 0 optical area
242 linear density of mass k*m = m * k 3 defines linear mass density
243 magnetic dipole moment mu~ = A * i 4 defines magn. dipole moment
244 magnetic dipole moment mu~ = q * A*f 4 circulation
245 magnetic dipole moment mu~ = F * k*q 2 force
246 magnetic dipole moment mu~ = U * k*m 1 electric potential
247 magnetic dipole moment mu~ = r * A*H 3 magnetic flux
248 magnetic dipole moment mu~ = J * B 2 action
249 magnetic dipole moment mu~ = E * m 1 quantum mass
250 magnetic dipole moment mu~ = H * p 2 momentum
251 magnetic dipole moment mu~ = W * D 3 energy
252 magnetic dipole moment mu~ = A*E * t 3 electric flux
253 magnetic dipole moment mu~ = q*r * c 3 electric dipole moment
254 magnetic field strength H = sigma * U 2 conductivity
255 magnetic field strength H = rho_q * A*f 2 circulation
256 magnetic field strength H = f * k*q 2 charge distribution
257 magnetic field strength H = r * B 1 defines magn. field strength
258 magnetic field strength H = A * B*k 1 quantum area
259 magnetic field strength H = E * rho_m 0 electric field
260 magnetic field strength H = p * B*delta 1 momentum
261 magnetic field strength H = A*H * delta 4 magnetic flux
262 magnetic field strength H = mu~ * n 3 defines magnetization
263 magnetic field strength H = k*m * B*f 0 mass distribution
264 magnetic field strength H = f*H * t 4 magnetic field change
265 magnetic field strength H = D * c 3 planar charge density
266 magnetic field strength H = i * k 4 BIOT_SAVART magnetic field
267 magnetic flux A*H = rho_q * W 2 energy
268 magnetic flux A*H = q*r * f 3 electric dipole moment
269 magnetic flux A*H = i * r 3 electric current
270 magnetic flux A*H = A*f * k*q 2 circulation
271 magnetic flux A*H = E * k*m 1 electric field
272 magnetic flux A*H = A * H 4 defines magnetic flux
273 magnetic flux A*H = J * B*k 2 action
274 magnetic flux A*H = A*E * rho_m 1 electric flux
275 magnetic flux A*H = B * p 1 magnetic induction
276 magnetic flux A*H = F * D 2 force
277 magnetic flux A*H = m * f*H 1 quantum mass
278 magnetic flux A*H = U * t 3 electric potential
279 magnetic flux A*H = q * c 1 electric charge
280 magnetic flux A*H = mu~ * k 3 magnetic dipole moment
281 magnetic induction B = sigma * E 2 OHM conductivity
282 magnetic induction B = r * B*k 3 quantum dimension
283 magnetic induction B = f * D 4 MAXWELL:displacement
current
284 magnetic induction B = A * B*delta 3 quantum area
285 magnetic induction B = i * delta 0 defines current density j
286 magnetic induction B = A*H * n 1 defines magnet. flux density
287 magnetic induction B = rho_m * f*H 0 mass density
288 magnetic induction B = B*f * t 3 quantum period
289 magnetic induction B = rho_q * c 1 charge density
290 magnetic induction B = H * k 4 AMPERE current density j
291 magnetic wave vector B*k = rho_q * f 2 charge density
292 magnetic wave vector B*k = r * B*delta 2 quantum dimension
293 magnetic wave vector B*k = H * delta 0 magnetic field
294 magnetic wave vector B*k = i * n 1 defines spatial current dens
295 magnetic wave vector B*k = rho_m * B*f 0 mass density
296 magnetic wave vector B*k = sigma * f*H 2 conductivity
297 magnetic wave vector B*k = B * k 3 defines magnetic wave vector
298 mass m = J * sigma 1 conductivity
299 mass m = epsilon * W 1 dielectric factor
300 mass m = C * F 1 electric capacitance
301 mass m = M * q * k*q 0 electric charge
302 mass m = r * k*m 2 quantum dimension
303 mass m = rho_m * p 1 momentum
304 mass m = A*f * eps*A 1 circulation
305 mass m = M * q*r * D 1 electric dipole moment
306 mass m = A * t 0 defines mass
307 mass density rho_m = C * f 1 electric capacitance
308 mass density rho_m = sigma * r 1 conductivity
309 mass density rho_m = M * rho_q * k*q 1 charge density
310 mass density rho_m = M * D * D 1 planar charge density
311 mass density rho_m = k*m * delta 3 mass distribution
312 mass density rho_m = m * n 4 defines mass density
313 mass density rho_m = epsilon * c 0 defines refraction index
314 mass density rho_m = t * k 0 quantum period
315 momentum p = M * q * i 3 electric current
316 momentum p = A * r 0 defines quantum volume
317 momentum p = A*f * k*m 2 circulation
318 momentum p = M * q*r * H 3 electric dipole moment
319 momentum p = M * k*q * A*H 2 magnetic flux
320 momentum p = W * rho_m 1 energy
321 momentum p = M * mu~ * D 2 magnetic dipole moment
322 momentum p = C * P 1 electric capacitance
323 momentum p = eps*A * f*F 1 force change
324 momentum p = F * t 4 force
325 momentum p = m * c 4 defines momentum
326 momentum p = J * k 4 DE BROGLIE: momentum
327 optical area eps*A = A * epsilon 2 defines optical area
328 optical area eps*A = C * r 3 electric capacitance
329 optical area eps*A = sigma * m 1 conductivity
330 optical area eps*A = k*m * rho_m 1 mass distribution
331 optical area eps*A = t * t 1 defines time square
332 planar density of electric charge D = sigma * i 3 conductivity
333 planar density of electric charge D = epsilon * E 4 defines displacement current
334 planar density of electric charge D = rho_q * r 4 charge density
335 planar density of electric charge D = k*m * B*k 1 mass distribution
336 planar density of electric charge D = H * rho_m 1 mass density
337 planar density of electric charge D = m * B*delta 1 mass
338 planar density of electric charge D = q * delta 4 defines planar charge dens.
339 planar density of electric charge D = q*r * n 4 defines electr. polarization
340 planar density of electric charge D = eps*A * B*f 2 optical area
341 planar density of electric charge D = C * f*H 2 electric capacitance
342 planar density of electric charge D = B * t 1 magnetic induction
343 planar density of electric charge D = k*q * k 3 charge distribution
344 planar density of magnetic induction B*delta = B * delta 3 defines planar induction density
345 planar density of magnetic induction B*delta = H * n 0 magnetic field
346 planar density of magnetic induction B*delta = sigma * B*f 2 conductivity
347 planar density of magnetic induction B*delta = B*k * k 3 magnetic wave vector
348 power P = M * i * U 3 defines electric power
349 power P = A*f * A*f 1 circulation
350 power P = W * f 4 defines power
351 power P = J * f2 4 action
352 power P = M * A*E * H 3 electric flux
353 power P = M * E * A*H 3 magnetic flux
354 power P = a * p 2 momentum
355 power P = A * c2 2 radiation intensity
356 power P = r * f*F 2 force change
357 power P = M * mu~ * f*H 2 magnetic dipole moment
358 power P = F * c 4 force
359 quantum Laplace-Operator delta = sigma * f 2 conductivity
360 quantum Laplace-Operator delta = epsilon * f2 4 defines wave equation
361 quantum Laplace-Operator delta = M * rho_q * B 2 charge density
362 quantum Laplace-Operator delta = M * B*k * D 2 magnetic wave vector
363 quantum Laplace-Operator delta = M * k*q * B*delta 1 charge distribution
364 quantum Laplace-Operator delta = r * n 3 spatial density
365 quantum Laplace-Operator delta = k * k 4 defines Laplace operator
366 spatial density n = M * rho_q * B*k 1 charge density
367 spatial density n = M * D * B*delta 2 planar charge dens.
368 spatial density n = delta * k 3 defines spatial density
369 square velocity of light c2 = A*f * f 3 circulation
370 square velocity of light c2 = A * f2 3 frequency square
371 square velocity of light c2 = a * r 3 acceleration
372 square velocity of light c2 = G * k*m 1 gravitational factor
373 square velocity of light c2 = M * E * H 3 POYNTING radiation
374 square velocity of light c2 = M * U * B 2 electric potential
375 square velocity of light c2 = M * A*E * B*k 2 electric flux
376 square velocity of light c2 = P * delta 4 defines radiation intensity
377 square velocity of light c2 = M * A*H * B*f 2 magnetic flux
378 square velocity of light c2 = M * i * f*H 2 electric current
379 square velocity of light c2 = c * c 4 defines square velocity
380 square velocity of light c2 = f*F * k 2 force change
381 temporal density of force f*F = a * A 2 acceleration
382 temporal density of force f*F = M * i * E 2 electric current
383 temporal density of force f*F = F * f 3 defines force change
384 temporal density of force f*F = M * U * H 2 electric potential
385 temporal density of force f*F = M * A*E * B 2 electric flux
386 temporal density of force f*F = G * m 3 gravitational factor
387 temporal density of force f*F = f2 * p 4 momentum
388 temporal density of force f*F = r * c2 3 quantum dimension
389 temporal density of force f*F = M * mu~ * B*f 2 magnetic dipole moment
390 temporal density of force f*F = M * A*H * f*H 2 magnetic flux
391 temporal density of force f*F = A*f * c 0 circulation
392 temporal density of force f*F = P * k 3 power
393 temporal density of magnetic induction B*f = a * rho_q 1 acceleration
394 temporal density of magnetic induction B*f = f * B 4 defines induction change
395 temporal density of magnetic induction B*f = f2 * D 2 planar charge density
396 temporal density of magnetic induction B*f = A*f * B*delta 3 circulation
397 temporal density of magnetic induction B*f = E * delta 3 FARADAY magnetic induction
398 temporal density of magnetic induction B*f = U * n 1 electric potential
399 temporal density of magnetic induction B*f = B*k * c 3 velocity of light
400 temporal density of magnetic induction B*f = f*H * k 1 wave vector
401 temporal magnetic field density f*H = f2 * k*q 3 charge distribution
402 temporal magnetic field density f*H = f * H 3 defines magnet. field change
403 temporal magnetic field density f*H = A*f * B*k 2 circulation
404 temporal magnetic field density f*H = a * D 3 acceleration
405 temporal magnetic field density f*H = F * B*delta 1 force
406 temporal magnetic field density f*H = U * delta 3 electric potential
407 temporal magnetic field density f*H = A*E * n 3 electric flux
408 temporal magnetic field density f*H = rho_q * c2 3 charge density
409 temporal magnetic field density f*H = r * B*f 0 quantum dimension
410 temporal magnetic field density f*H = B * c 0 velocity of light
411 temporal magnetic field density f*H = E * k 3 FARADAY magnetic field H
412 time t = M * q * rho_q 0 electric charge
413 time t = A * sigma 1 conductivity
414 time t = epsilon * A*f 2 circulation
415 time t = r * rho_m 0 mass density
416 time t = f * eps*A 2 optical area
417 time t = M * k*q * D 0 charge distribution
418 time t = m * delta 0 quantum mass
419 time t = C * c 0 electric capacitance
420 time t = k*m * k 1 mass distribution
421 universal unity 1 = a * C 0 capacitance/acceleration
422 universal unity 1 = M * rho_q * i 0 current/charge density
423 universal unity 1 = sigma * A*f 0 defines electr. conductivity
424 universal unity 1 = M * k*q * B 0 induction/charge distribut.
425 universal unity 1 = M * q * B*k 0 magn. wave vector/charge
426 universal unity 1 = f2 * eps*A 0 optical area/freq. square
427 universal unity 1 = M * H * D 0 displacement/magnetic field
428 universal unity 1 = M * q*r * B*delta 0 laplac. of ind./el.dip.mom.
429 universal unity 1 = A * delta 0 laplacian/quantum area
430 universal unity 1 = p * n 0 defines quantum volume
431 universal unity 1 = epsilon * c2 0 defines dielectric factor
432 universal unity 1 = f * t 4 defines frequency
433 universal unity 1 = rho_m * c 0 defines reciprocal velocity
434 universal unity 1 = r * k 4 defines wave vector
435 velocity of light c = M * rho_q * U 1 electric potential
436 velocity of light c = f * r 4 defines velocity
437 velocity of light c = f2 * k*m 1 mass distribution
438 velocity of light c = M * H * H 3 defines magn. energy density
439 velocity of light c = M * i * B 2 electric current
440 velocity of light c = M * A*H * B*k 2 magnetic flux
441 velocity of light c = G * eps*A 0 gravitational factor
442 velocity of light c = M * E * D 3 defines elec. energy density
443 velocity of light c = M * mu~ * B*delta 2 magnetic dipole moment
444 velocity of light c = F * delta 3 defines pressure
445 velocity of light c = W * n 3 defines energy density
446 velocity of light c = rho_m * c2 1 mass density
447 velocity of light c = sigma * f*F 1 conductivity
448 velocity of light c = M * q * B*f 1 electric charge
449 velocity of light c = M * k*q * f*H 1 charge distribution
450 velocity of light c = a * t 4 acceleration
451 velocity of light c = A*f * k 3 circulation
452 wave vector k = a * epsilon 1 acceleration
453 wave vector k = C * f2 1 electric capacitance
454 wave vector k = M * rho_q * H 1 charge density
455 wave vector k = M * k*q * B*k 1 magnetic wave vector
456 wave vector k = f * rho_m 0 mass density
457 wave vector k = M * B * D 1 electromagnet. field
458 wave vector k = M * q * B*delta 1 electric charge
459 wave vector k = r * delta 3 quantum dimension
460 wave vector k = A * n 3 quantum area
461 wave vector k = sigma * c 1 conductivity